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Abstract. The method of integral equation formulation, proposed by Eckhardt and El Sheikh, is
extended to solve an even initial mixed problem for the first time. The truncation of the integral
equation or, equivalently, the infinite homogeneous algebraic system to which the problem is
converted, is justified. In addition, having carried out the progression of the procedures right to
the numerical results at several cases, a clarified and comprehensive idea about the usefulness
of the method is revealed.

1. Introduction

In 1987, Eckhardt and El Sheikh [1] proposed a generalization of the usual Fourier method
to solve initial mixed boundary value problems. This work was highly influenced by the
method previously proposed by Chersky [2] for solving mixed stationary problems and
which had already been widely applied to solutions of problems in several branches of
mathematical physics [3]. Both methods in [1] and [2] are based on defining the extension
of the Dirichlet condition compatible with the Neumann data where they are imposed. This
is achieved through reduction to a singular integral equation. Since the boundary conditions
in the case of an initial problem are usually set equal to zero, the Dirichlet–Neumann initial
problem is viewed as a natural generalization of both the uniform Dirichlet and Neumann
initial problems as two limiting cases. This generalization manifested itself throughout the
procedures of [1], and it will be naturally realized in this work too. Furthermore, as it
is a Fourier method which consists of defining the eigenvalues and eigenfunctions of the
corresponding Sturm–Liouville problem, the method proposed in [1] has the advantage of
leading to a better insight into the structure of the solutions of the underlying problems in
contrast to purely numerical methods which ignore theoretical knowledge about the problem.
Nevertheless, so far it could only have been applied to odd problems. The reason for this
is explained in section 2.

In this work, the even Dirichlet–Neumann initial problem for the wave equation in a
circular region is considered. Physically, this problem is the mathematical formulation for
the evolution of a vibrating circular membrane under the influence of an initial displacement,
with a moving clamped arc of its circumference, while the complementary arc remains fixed.
A similar technique to that developed in [1] is followed. The separation of variables leads
in turn to a Sturm–Liouville problem of the Dirichlet–Neumann type which is formulated
as a singular integral equation with Cauchy’s kernel, but now involving an additional term,
because for an even function the zero Fourier component does not, in general, vanish. By
converting the singular integral equation to an infinite homogeneous system of algebraic
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596 M G El Sheikh

equations, we show how the above additional term gives rise to cumbersome technical
difficulties but which are now finally resolved. The truncation of the latter infinite system
eventually determines the small eigenvalues as well as their corresponding eigenfunctions.

In [1], the application of the truncation method to the infinite homogeneous algebraic
system was plausibly assumed to be useful in view of the fact that by retaining a greater
number of first terms from the Fourier representation of a continuous function as an
approximation, the effect of the excluded next term is reduced. In section 5 of this paper,
it has been shown that for a given eigenvalue the homogeneous integral equation (algebraic
system) to which the problem is formulated is equivalent to an inhomogeneous one (algebraic
system) and, therefore, the truncation could eventually be justified. This represents the
second principal result achieved in this work.

Finally, the numerical experiments confirm the validity of the method. The eigenvalues
designated by means of the truncation method reach their practically infinite precision at
suitable orders. As the problem coincides with the uniform Dirichlet case, i.e. when the arc
on which the Neumann condition is imposed vanishes, the eigenvalues are those obtained
long ago for the latter problem. Thereafter they start to vary monotonically to finally
become those of the pure Neumann problem as the above-mentioned arc expands over the
whole circumference of the circle. The Fourier components retained on carrying out the
truncation(s) can be obtained precisely at sufficiently large orders. As for the excluded
components, they can be obtained through a valid approximation. These last results are
illustrated graphically.

2. The problem and its reduction to a homogeneous discrete problem

Our point of departure is the dimensionless wave equation

∂2U

∂r2
+ 1

r

∂U

∂r
+ 1

r2

∂2U

∂θ2
= ∂2U

∂τ 2
(r < 1, |θ | 6 π; τ > 0) (2.1)

together with the boundary condition

U(1, θ; τ) = 0 c 6 |θ | 6 π

∂U(1, θ; τ)

∂r
= 0 |θ | < c

(2.2)

and

|U(r, θ; τ)| < ∞. (2.3)

In addition, the functionU should also satisfy the initial conditions

∂U(r, θ; 0)

∂τ
= 0 (2.4)

and

U(r, θ; 0) = f (r, θ) (2.5)

wheref (r, θ) is even with respect toθ and a continuous function, andf (1, θ) = 0,

c 6 |θ | 6 π. (2.6)

The bounded solution of equation (2.1) satisfying the initial conditions (2.4) and (2.5)
can be thought of in the form

U(r, θ; t) =
∞∑
i=1

ciS(r, θ; γi) cosγiτ. (2.7)
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In order for the other conditions (2.2) to be satisfied as well as maintaining the boundedness
of the solution,γi andS(r, θ; γi), i ∈ N , should be the eigenvalues and their corresponding
eigenfunctions of the mixed Sturm–Liouville problem consisting of the Helmholtz equation

∂2S

∂r2
+ 1

r

∂S

∂r
+ 1

r2

∂2S

∂θ2
+ γ 2S = 0 (2.8)

together with conditions (2.2) and (2.3) in whichU is replaced byS. In section 3, it will
be shown that the spectrum of this finite problem is discrete as in the case of a uniform
problem with linear geometry, namely those values ofγ at which the homogeneous algebraic
system (3.13) (truncated at a sufficiently large order) has a non-trivial solution, whence the
eigenvalues were immediately denumerated in expression (2.7). Moreover, following the
same pattern as in the case of a uniform Sturm–Liouville problem, it is a simple matter to
show that the eigenfunctions corresponding to different eigenvalues of this mixed problem
are orthogonal. Consequently, the coefficientsci in expression (2.7) are simply defined to
be

ci =
∫ π

−π

∫ 1
0 f (r, θ)S(r, θ; γi)r dr dθ∫ π

−π

∫ 1
0 S2(r, θ; γi)r dr dθ

. (2.9)

The mixed condition (2.2) can be replaced by the two uniform conditions

S(1, θ; γ ) = ϕ−(θ; γ ) =
{

undetermined when|θ | < c

0 whenc 6 |θ | 6 π
(2.10)

∂S(1, θ; γ )

∂r
= ϕ+(θ; γ ) =

{
0 when|θ | < c

undetermined whenc 6 |θ | 6 π
(2.11)

which should be compatible. It should be noted that for any square integrable function,
ϕ−(θ), the solution of the Dirichlet problem (2.8) and (2.10) can be written in the form

S(r, θ; γ ) =
∞∑

n=−∞
8n−

J|n|(γ r)

J|n|(γ )
einθ . (2.12)

Here and henceforth,8n± are the complex Fourier components of the functionsϕ±(θ)

8n± = 1

2π

∫ π

−π

ϕ±(θ)e−inθ dθ ϕ±(θ) =
∞∑

n=−∞
8n±einθ . (2.13)

Analogously, the solution of the Neumann problem (2.8) and (2.11) for an arbitrary square
integrable8+(θ) is simply

S(r, θ; γ ) =
∞∑

n=−∞
8n+

J|n|(γ r)

|n|J|n|(γ ) − γ J|n|+1(γ )
einθ . (2.14)

Thus, to ensure the compatibility of conditions (2.10) and (2.11), it is necessary and sufficient
that solutions (2.12) and (2.14) become identical. In other words, the eigenvalues of the
above mixed Sturm–Liouville problem are those for which the discrete problem

|n|8n−(γ ) − Q|n|(γ )8n−(γ ) = 8n+(γ ) (2.15)

is satisfied, where

Q|n|(γ ) = γ J|n|+1(γ )

J|n|(γ )
= O(|n| + 1)−1 (2.16)

and the functionsϕ±(θ; γ ) are restricted as shown on the right-hand side of equations (2.10)
and (2.11). Because of its homogeneity, the compatibility equation (2.15) may have
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solutions only at discrete values for the parameterγ . Denoting by {8n±(γi), n ∈ Z},
the solution of equation (2.15) corresponding to the eigenvalueγi , the corresponding
eigenfunction of the mixed Sturm–Liouville problem can easily be written down

S(r, θ; γi) = 80−(γi)

J0(γi)
J0(γir) + 2

∞∑
n=1

8n−(γi)

Jn(γi)
Jn(γir) cosnθ. (2.17)

Here, use has been made of the relation

8n−(γi) = 8−n−(γi) (2.18)

resulting from the even property of the problem. In view of equation (2.15), the solution
(2.17) is unique whether it is obtained by using either (2.12) or (2.14).

3. Integral equation formulation of the problem and its reduction to an algebraic
system of equations

On performing the inverse Fourier transform to expression (2.15), we get

1

π i

d

dθ

∫ π

−π

ϕ−(t; γ )

1 − ei(θ−t)
dt −

∞∑
n=−∞

Q|n|(γ )8n−(γ )einθ = ϕ+(θ; γ ) (3.1)

where we have used the relation [1–3]
∞∑

n=−∞
|n|8n−(γ )einθ = 1

π i

d

dθ

∫ π

−π

ϕ−(t; γ )

1 − ei(θ−t)
dt.

Restricting equation (3.1) to the interval(−c, c) where ϕ+(θ; γ ) = 0 and recalling that
ϕ−(θ; γ ) = 0 on c 6 |θ | 6 π , we obtain through integration

1

π i

∫ c

−c

ϕ−(t; γ )

1 − ei(θ−t)
dt + Q0(γ )80−(γ )θ −

∞∑
n=−∞

′
Q|n|(γ )8n−(γ )

einθ

in
= α (3.2)

whereα is a constant, the prime over the summation symbols indicates that the valuen = 0
is not included. The constantα is to be designated in such a way that the singular integral
equation with the Cauchy kernel (3.2) possesses a bounded solutionϕ−(θ; γ ) [4, p 257].
However, it will turn out that this bounded solution does not depend onα. The solution
can be written in the form

ϕ−(θ; γ ) = R(θ)

[
Q0(γ )80−(γ )Ī (θ) −

∞∑
n=−∞

′
Q|n|(γ )

8n−(γ )

n
In(θ) + iαI0(θ)

]
(3.3)

where

Ī (θ) = i

π

∫ c

−c

ξeiξ dξ

R(ξ)(eiξ − eiθ )
(3.4)

In(θ) = 1

π

∫ c

−c

e−i(n+1)ξ dξ

R(ξ)(eiξ − eiθ )
(3.5)

R(θ) = lim
z→eiθ

|z|<1

√
(z − eic)(z − e−ic). (3.6)

The integralsĪ (θ) andIn(θ) are to be understood in the sense of the Cauchy principal value
and are not to be confused with modified Bessel functions. Forn > 0, [3, p 215], we have

ln(θ) = −ei(n−1)θ
n−1∑
j=0

e−iθj

2j

j∑
m=0

(2m − 1)!!

m!(j − m)!

[2(j − m) − 1]!!

eimce−i(j−m)c
n > 0 (3.7)



Mixed initial Dirichlet–Neumann problem for the wave equation 599

and

l0(θ) = 0. (3.8)

Further, it has already been shown [1] that

I−n(θ) = −e−iθ In(−θ). (3.9)

In relation (3.7), the notation(2m − 1)!! = (2m − 1)(2m − 3) . . . 5.3.1 is used, and the
convention 0!!= (−1)!! = 1 is adopted. The integral̄I (θ) is rather difficult to deal with
since in this case, one must calculate the residue for the product of four infinite series,
namely, the expansions of [τ − A]−1/2, [τ − A]−1/2, ln τ and [τ − z]−1 where τ = eiξ ,
z = eiθ andA = eic. For an odd functionϕ−, which is the case in all problems considered
in [1–3], the zero Fourier component80− should always equal zero, and this difficulty was
not apparent at first, but for an even functionϕ−(θ; γ ) its resolve is unavoidable. For the
time being, we make use of the expansion

ξ =
∞∑

n=−∞

′ (−)n+1

in
einξ . (3.10)

together with (3.8) and the fact that8n−(γ )/n is odd to rewrite the solution (3.3) in the
form

ϕ−(θ, γ ) = −R(θ)

[
Q0(γ )80−(γ )

∞∑
n=1

(−)n

n
{In(θ) − I−n(θ)}

−
∞∑

n=1

Qn(γ )
8n−(γ )

n
{In(θ) − I−n(θ)}

]
. (3.11)

Substituting in the formula

8`− = 1

2π

∫ c

−c

ϕ−(θ)e−i`θ dθ (3.12)

according to (3.10), we get the algebraic system

8`−(γ ) + Q0(γ )80−(γ )N` −
∞∑

n=1

Qn(γ )
8n−(γ )

n
[Nn` − N−n`] = 0 ` = 0, 1, 2, . . .

(3.13)

where forn 6= 0 we have used the notation

N−n` = 1

2π

∫ c

−c

R(θ)I−n(θ)e−i`θ dθ

=
n−1∑
j=0

Aj−n−`−1

j∑
m=0

(2m − 1)!![2(j − m) − 1]!!

2m!!(2j − 2m)!!ei(j−2m)c

Nn` = −
n−1∑
j=0

An−j−`−2

j∑
m=0

(2m − 1)!![2(j − m) − 1]!!

2m!!(2j − 2m)!!e−i(j−2m)c
(3.14)

where

Ak = 1

2π

∫ c

−c

R(θ)ei(k+1)θ dθ

= 1

2π i

∫
ĀA

√
(t − A)(t − Ā)tk dt A = eic (3.15)
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and the arcĀA is directed in the positive sense along the unit circle in the complext-plane.
The values of these integrals are given by the formulae [3, p 216]

A−1 = e−ic + eic

4
− 1

2
= A−2,

A−k = 1

2k

[
(2k − 5)!![e−i(k−1)c + ei(k−1)c]

(k − 1)!
−

k−2∑
m=1

(2m − 3)!!(2k − 2m − 5)!!

m!(k − 1 − m)!ei(k−1−2m)c

]
k > 2

(3.16)

and fork > 0 we have [1]

Ak = A−(k+3). (3.17)

Finally, N` is given by

N` =
∞∑

n=1

(−)n

n
{Nn` − N−n`} (` ∈ N+). (3.18)

It has been shown [1] thatN−`n(N`n) tends to zero as̀ → ∞ more rapidly than 1/`
and indeed, it tends to zero asn → ∞ since

1

`
N±`n = 1

n
N±n`. (3.19)

Thus, the coefficients of the Fourier components to the right-hand side of system (3.13)
tend to zero asn and` increase indefinitely. The coefficientsN` of 80−(γ ) represent the
technical difficulties still to be resolved. These infinite series need much effort to calculate
and thereafter can still influence the accuracy of the solution. In order to sum up these
series, we first note that the solution of system (3.13) must obey the condition

ϕ−(π; γ ) = 80−(γ ) + 2
∞∑

`=1

cos`π8`−(γ ) = 0 (3.20)

since it is imposed as long asc ∈ [0, π). On multiplying thè th equation,̀ ∈ N , of system
(3.13) by 2 cos̀π and adding to the first one, it is a simple matter to verify that the relation

[Nn0 − N−n0] + 2
∞∑

`=1

(−)`[Nn` − N−n`] = 0 n ∈ N (3.21)

is necessary and sufficient for condition (3.20) to be satisfied. Indeed, the last relations are
fulfilled. For example, we have (recalling (3.17))

[N10 − N−10] − 2[N11 − N−11] + 2[N12 − N−12] − 2[N13 − N−13] + · · ·
= [−A−1 − A−2] − 2[−A−2 − A−3] + 2[−A−3 − A−4] − 2[−A−4 − A−5]

+ · · · = 0

and so on. Finally, in view of (3.19) and (3.21) we have

N` =
∞∑

n=1

(−)n

n
(Nn` − N−n`)

=
∞∑

n=1

(−)n

`
(N`n − N−`n)

= − 1

2`
[N`0 − N−`0]

= −1

`
N`0 (3.22)
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where the last step follows from the relationNn0 = −N−n0 which can be verified on letting
` = 0 in both definitions (3.14), and bearing equation (3.17) in mind. In brief, system
(3.13) can now be written in the form

80− + N0Q0(γ )80−(γ ) −
∞∑

n=1

Qn(γ )

n
[Nn0 − N−n0]8n−(γ ) = 0

8`−(γ ) − 1

`
N`0Q0(γ )80−(γ ) −

∞∑
n=1

Qn(γ )

n
[Nn` − N−n`]8n−(γ ) = 0 ` = 1, 2, 3.

(3.23)

This form is clearly more simplified than (3.13). The first equation of system (3.23),
involving N0, the sole coefficient not exactly calculated, represents no profound difficulty
since it can be replaced by (3.20).

In the same way as followed in [1] it can be verified that the small eigenvalues may be
obtained by truncating system (3.23) at suitable orders. Moreover, the calculations confirm
this assertion as shown in section 6. The influence of the truncation on the eigenfunctions
is discussed in section 5.

4. The uniform casesc = 0, π

It can be shown that the solution obtained by solving equation (3.23) atc = 0, π coincides
with the classical solutions of the Dirichlet and Neumann problem, respectively. Indeed, if
c = 0, then all the integralsAk involved by the definitions (3.13) ofN±n` will vanish (see
definition (3.14)). Consequently, system (3.23) will be reduced to

8`−(γ ) = 0 ` = 0, 1, 2, . . . (4.1)

and the solution (2.12) will be trivial except at those values ofγ for which the denominator
of any term on its right-hand side vanishes. For the sake of definiteness, in the event that
γi is a zero ofJ|`|(γ ) say, solution (2.12) will be reduced to the form

S(r, θ; γi) ∼ J|`|(γir)e
i`θ (4.2)

which is just a classical partial solution of the uniform Dirichlet problem. Thus, the
eigenvalues of the problem in this case are the solution of

J`(γ ) = 0 ` = 0, 1, 2, . . . . (4.3)

To verify the validity of the similar conclusion for the casec = π , we rewrite expression
(3.14) in the form

N−n` =
n−1∑
j=0

Aj−n−`−1Sj (c) Nn` =
n−1∑
j=0

An−j−`−2Sj (c). (4.4)

It could be shown [1] that

Sj (0) = 1 j ∈ N+. (4.5)

Together with the definition of the inner summationSj (c), this leads to the result

Sj (π) = (−1)j (4.6)

but since in this case we have (definition (3.15))

Ak =
{

−1 k = −1, −2

0 otherwise
(4.7)
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it follows immediately that

N−n` = 0 Nn` = δ`n Nn0 = −N−n0 = (−)n n, ` ∈ N. (4.8)

Thus, asc nearsπ indefinitely, system (3.23) becomes

(−)`

`
Q0(γ )80−(γ ) +

[
1 − 1

`
Q`(γ )

]
8`−(γ ) = 0. (4.9)

According to definition (2.16), this system may have a non-trivial solution only ifγ is a
zero of the relation

[`J`(γ ) − γ J`+1(γ )] = 0 ` = 0, 1, 2, . . . (4.10)

which is the well known result defining the eigenvalues of the uniform Neumann problem.

5. Justification of the truncation

As we have pointed out above, the constantα in the right-hand side of equation (3.2) is
immaterial (see the inversion formula (3.3) together with (3.8) whatever be the value ofα.
See also the reduced system (3.23)) and can practically be set equal to zero. Thus, this
equation is a homogeneous one, and the estimation of the error taking place in the solution of
such an equation as a result of an approximation process cannot yet be found in the literature.
However, the approximation used in this paper on obtaining a solutionϕ−(θ; γi), namely
replacing this function in equation (3.2) by the first few terms of its Fourier representation
or equivalently the truncation of system (3.23), can be justified provided the designation of
the correspondingγi can practically reach its infinite precision.

The solutionϕ−(θ, γi) of the homogeneous equation (3.2) for which the zero Fourier
component80−(γi) equals 1 is clearly the solution of the inhomogeneous equation

Kϕ = f (5.1)

where

Kϕ− = 1

π i

∫ c

−c

ϕ−(t, γi)

1 − ei(θ−t)
dt −

∞∑
n=−∞

′
Q|n|(γi)8n−(γi)

einθ

in
(5.2)

and

f = −Q0(γi)

∞∑
n=−∞

(−)n

in
einθ . (5.3)

Indeed, following the same steps as in section 3, the above equation can be reduced to the
inhomogeneous algebraic system

80−(γi) −
∞∑

n=1

Qn(γi)

n
[Nn0 − N−n0]8n−(γi) = −Q0(γi)N0

8`−(γi) −
∞∑

n=1

Qn(γi)

n
[Nn` − N−n`]8n−(γi) = 1

`
N`0Q0(γi) ` ∈ N. (5.4)

Further, the determinant of this system does not vanish since its truncation at any order
differs from the corresponding one of system (3.23) which finally vanishes atγi . Clearly
systems (3.23) and (5.4), both truncated at arbitrary order` = j (say), will have the same
solution. To solve system (3.23), we first set80(γi) = 1 in the lastj -equations and then,
after solving them, the solution will satisfy the first equation automatically, while the last
j -equations of system (5.4) are identical to those mentioned above and therefore will have
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the same solution for8`(γi), ` = 1, 2, . . . , j . The substitution of this solution in the first
equation of system (5.4), comparing it with the first equation of system (3.23), will yield
the inevitable result80−(γi) = 1.

Having come to the conclusion that equation (3.2), asγ assumes an eigenvalueγi ,
is equivalent to the inhomogeneous equation (5.1), the truncation can now be justified as
follows. On truncating system (3.23) at thej th order, we approximate equation (5.1) to the
more simple form

K̃ϕ̃− = f (5.5)

where K̃ and ϕ̃ are defined by replacing the infinity symbol in equations (5.2) and (5.3)
by the bounded valuej . Taking into consideration that the Banach spaceL2[−c, c] is the
domain and the range of both the operatorsK andK̃, the norm of the operatorK − K̃ can
easily be estimated. Indeed we have

‖(K − K̃)ϕ−(x)‖ =
∫ c

−c

∣∣∣∣ 1

π

∞∑
n=j

Qn

n

∫ c

−c

sinn(x − t)ϕ−(t) dt

∣∣∣∣2

dx 6 4

( ∞∑
n=j

Qn

n

)2

‖ϕ−‖2

(5.6)

and consequently,

‖K − K̃‖ 6 2
∞∑

n=j

Qn

n
. (5.7)

The right-hand side in equation (5.7) tends to zero sinceQn = O(1/n) according to
definition (2.16). Together with the fact that equation (5.5) has a unique bounded solution
(3.10) truncated at thej th order and in which{1, 8n−(γi); n = 1, 2, . . . , j} is the solution
of system (5.4) truncated at thej th order, equation (5.7) leads to the boundedness of the
operatorK̃−1(K − K̃) and its norm eventually satisfies

‖K̃−1(K − K̃)‖ < 1 (5.8)

providedj is sufficiently large. In view of this result [5], it follows that equation (5.1), or
equivalently (3.2) in whichγ = γi , has the unique solution

ϕ−(γi) = ϕ̃−(γi) + [I + K̃−1(K − K̃)]−1K̃−1(f − Kϕ̃(γi)) (5.9)

where I is the unit operator. Further, the resulting error due to the truncation can be
estimated according to the formula

‖ϕ− − ϕ̃−‖ 6 ‖K̃−1(f − Kϕ̃)‖
1 − ‖K̃−1(K − K̃)‖ . (5.10)

Indeed, the calculations have been continued right to the designation of the eigenvaluesγi ,
i = 1, . . . , 6, as well as the corresponding sets{8n−(γi), n ∈ N+ and |n| 6 70} at several
values of the parameterc. In all these cases, the numerical results strongly suggest the
validity of inequality (5.8) as soon asj grows beyond relatively small limits. The situation
is illustrated in section 6.

6. Numerical verification

Some numerical results are shown here to give an idea about the influence of the truncation
on the eigenvalues and their corresponding eigenfunctions of the problem and therefore
represent an investigation of the usefulness of the method. On acquiring these results,
system (3.23) was truncated at different orders:j = 4, 5, . . .. The eigenvalues at different
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values of the parameterc were then obtained through equating the determinants of the
truncated system to zero. At a certain value ofc, γ

(j)

i will stand for theith zero of the
determinant truncated at thej th order. The greater the increase inj is the greater the
number of decimal places in which the eigenvalues remain unchanged. The orderj at
which the eigenvalue becomes practically precise depends on the value of the parameter
c as well as the orderi of the eigenvalue itself. To illustrate, table 1 exhibits the first
six eigenvalues in the casec = 1

2π . The first eigenvalue is stable to four decimal places
from the eighth-order onwards while the second and the third reach the same degree of
precision at the 10th and 12th order, respectively. For the next three eigenvalues,j should
be increased considerably. In fact, the right-hand side of (3.23), viewed as an expansion of
8`−(γ ) decays slowly asγ increases sinceQn(γ ) = 0(γ 2) (definition (2.16)) so that more
terms will be required for the validity of the approximation of8`−(γ ), ` ∈ N+, as well
as the accuracy of the representation ofϕ−(θ; γ ) and the precision of the corresponding
eigenvalueγ thereby. In addition to the case of a large eigenvalue, higher orders of the
truncation are also required whenc becomes small. Indeed, the calculations show that asc

decreases (increases) below (above)π
2 , the higher (lower) the orderj we need to realize a

precision similar to that in table 1. This can simply be traced back to the fact that as the
support of a functionϕ− becomes narrower, a large number of its Fourier representation are
needed to approximate it conveniently. At this stage it is appropriate to exhibit in table 2
the evolution of the first and second eigenvalues asc varies from 0 toπ . The monotonic
variation is to be noted.

Table 1. The first six eigenvalues in the casec = 1
2π .

i 1 2 3 i 4 5 6

γ
(8)
i 1.2444 2.9433 4.6049 γ

(17)
i 5.4413 6.1457 7.3053

γ
(9)
i 1.2444 2.9433 4.6049 γ

(18)
i 5.4413 6.1457 7.3053

γ
(10)
i 1.2444 2.9432 4.6049 γ

(19)
i 5.4412 6.1457 7.3053

γ
(20)
i 1.2444 2.9432 4.6048 γ

(20)
i 5.4412 6.1457 7.3053

Table 2. The first two eigenvalues atc = s
6π , s = 0, 1, . . . , 6.

c

i 0 π
6

π
3

π
2

2π
3

5π
6 π

1 2.4048 2.1623 1.6108 1.2444 0.9914 0.7767 0.0000
2 3.8317 3.1953 2.9580 2.9432 2.7480 2.4084 1.8412

Table 3. The components8`−(γ1), ` = 1, 2, . . . , 20; in the casec = π
2 taken from top left,

respectively.

0.7325 0.2072 −0.0983 −0.0664 0.0448 0.0353−0.0269 −0.0227 0.0184 0.0161
−0.0136 −0.0122 0.0106 0.0097−0.0086 −0.0079 0.0071 0.0066−0.0060 −0.0056

The Fourier components8`−(γi)
(j), ` = 1, 2, . . . , j can be obtained on substituting

γ = γ
(j)

i in system (3.23) truncated at thej th order, setting80−(γi) = 1, and then solving
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Figure 1. (Top) The functionϕ−(θ; γ1) in the casec = 1
2π truncated at orders 20 (dotted curve)

and 40 (full curve). (Bottom) The functionϕ+(θ; γ1) in the casec = 1
2π truncated at orders 20

(dotted curve) and 40 (full curve).

any j of the resulting equation, provided their determinant does not vanish. The remaining
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equation will be automatically satisfied. Further, the approximation

8`−(γ
(j)

i ) = 1

`
N`0Q0(γ

(j)

i ) +
j∑

n=1

Qn(γ
(j)

i )

n
[Nn` − N−n`]8n−(γ

(j)

i )

` = j + 1, j + 2, . . . , k. (6.1)

can be used to obtain more components of the functionϕ
(j)
− (θ; γi). At sufficiently largej ,

this approximation provides the same results which would be obtained through increasing
the order of the truncationj . For example, recalling that in the casec = π

2 the first

eigenvalueγ
(j)

1 (see table 1) remains unchanged fromj = 8 onwards, thus the first 20
components of the corresponding solution can be obtained through 13 different truncations,
namely those for whichj = 8, 9, . . . , 20 = k. For all these processes, the calculations
provide the components unchanged to four decimal places (see table 3). In fact, according
to the approximation (6.1), the first neglected term in the expression of8(j+1)−(γ (j)) is
simply

Qn(γ
(j)

i )

n
[Nn` − N−n`]8n−(γ

(j)

i )

∣∣∣∣
n=`=j+1

< 0(j + 1)−4 (6.2)

which confirms the high validity of approximation (6.1). In this estimation, use has been
made of the relations (2.16), (3.19) as well as the asymptotic behaviour of the quantities
N±n` mentioned in the discussion preceding (3.19), and the fact that8n− is a Fourier
component of a continuous function. Thus, for the left-hand side of (5.10), we have
‖ϕ− − ϕ̃−(j)‖ 6 0.0000. . . , j > 8 whereϕ̃−(j) stands here for the function(s)ϕ̃−(θ; γ

(j)

1 )

while decreasingj to 7, the resulting error becomes‖ϕ− − ϕ̃−(7)‖ ≈ 0.0006. . ..
Finally, to demonstrate the usefulness of the method, figures 1(a) and 1(b) show the

plots of the functionsϕ±(θ, γ1) defined according to the formulae

ϕ−(θ, γ1) ≈ 1 + 2
k∑

n=1

8n−(γ1) cosnθ k = 20, 40 (6.3)

ϕ+(θ; γ1) = ∂S(1, θ; γ1)

∂r
≈ −Q0(γ1) + 2

k∑
n=1

[n − Qn(γ1)]8n(γ1) cosnθ k = 20, 40.

(6.4)
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